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Abstract 6 ‘3 é(l I

The spiner fermulation of magnetegas dynamics that was developed by
the author in a previous paper is applied to the problem of a sound
wave in an elgctrically neutral gas. This simple, one-dimensional -problem
serves te illustrate the essential features ef the formalism, The solutien
is completely relativistic and, fer seund waves of macrescopic wavelengths,
satisfies Euler's equatien, the continuity equatien, and the adiabatic
cenditien. Fer wavelengths ef the erder of atemic dimensions, spin-dependent
terms, which are cempletely negligible fer macrescepic waves, become
impertant and drastically alter the form of the selution. Thus the spinor
selutien of the seund wave preblem has the desirable feature that it
autematically breaks dewn at the peint where classical mechanics breaks
dewn, namely when the characteristic length ef the problem becomes pf

atemic dimensiens,

Intreductien

This paper is a supplement to the author's earlier paper "Spinor
Formulation of Magnetogas Dynamics" (Goddard Space Flight Center X-6,0~64-55).
In order to illustrate the formalism developed in that paper (which shall
henceforth be referred to as "I"), the spinor formulation of fluid dynamics
is applied to the one-dimensional problem of a sound wave in an electrically
neutral perfect gas,

The solution is carried out by means of a perturbation on a simple

zero-order solution which corresponds to a fluid of constant density




moving in the positive z direction with constant velocity. By choosing
the particle spins, whose role in any macroscopic problem is always
insignificant, to be aligned in the z direction, it is possible to reduce
two of the four spinor components to zero, thereby reducing the calcula-
tional burden. The fluid enthalpy, which is regarded as the driving func-
tien of the problem, is next assigned a sinuseidal time-independent vari-
ation in the z direction, and the spinor equations are solved to find the
spinor functions consistent with this form of variation in the enthalpy.
The solution is carried out using the first-order perturbation aporexima=

tion in which the perturbation parameter is the ratio of the maximum change

in the specific enthalpy to the particle rest-mass, For practical problems,

this ratio is always very small,
Once the spinor equations have been solved for a sinusoidal variation

in enthalpy, spinor relations derived in I are applied to calculate the

fluid flux density, which turns out to be constant, and the particle density,

which turns out to have a sinusoidal variation of the same wavelength as
the assigned variation in the enthalpy. It is shown that the solution
maintains conservation of particle energy, which is just the condition
required by Euler's equation. That this is so can be seen from the fact

that for this problem eq. (2-37) of I (Euler's equation), reduces to
> o = 2
O =V(mu’c*) a2 Y(mec*+ L& mn- +m‘ﬁ)

which states that the sum of the kinetic and thermal energies per particle

must remain constant.

(1)



The spinor equations, like Euler's equation, must be supplemented
by the adiabatic condition (eq. (2-31) of 1):

eSh =(r-NRSC (2’

where S(’ and §P, are the changeé in the density and enthalpy respectively
as one moves along the wave, which appears to be stationary because the
fluid is streaming in the +z direction with exactly the same speed as that
with which the wave is propagating in the -z direction. It i1s shewn

that (2) yields a condition on the fluid velocity which is just the usual
expression for the speed of sound in terms of the absolute temperature of
the gas,

Finally, it is shown that, although the effects of particle spin are
cempletely negligible for macroscopic wavelengths, they become important
when the wavelengths become of atomic dimensions, with the result that the
classical solution is no longer wvalid.

Fecessary Spinor Relations

The spinor relations that will be needed are recapitulated below,

The numbers to the left are the formula refercnces in I. OSince in the
2 t
present problem two of the spinor components (£% and X' ) are zero, the
spinor equations take the following simplified form:
S | 2
(F3E ) =% 7
’Bt
(8-1a,b) (3)

L( B'X" S Xt
<3t T I7
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where the overhead bar indicates complex conjugation and
N A
A= <= (L)

mcC



where

(8-1c) M= m(+ £8) (s)
(o
where § Q is the variable part of the enthalpy, the constant part ﬂ° having

been absorbed into the particle rest-mass m.

Once the spinors are known, the flux density lj-vector eu‘] is calcu-

lated from the following relations:
° ott: 2,2 z 2 1 142
=gz |18+ 18+ 1+ 1P = e Tie w1200
cu' = R FF+1' 7" ] = o
(B-15) (6)
Cu* = —yz Jf[-f'fl + x'x‘] =0
l 2 ) 3
Cu’ = =111 =122 + 1= 101 =L ]ie 1]
where the simplifications that result when §1= X"—-‘- O have been carried

out. The invariant density € is found from the relation

' ) y 2 %, )
(-9 €={ew)eus)] "= vr| o't - %' = vz | £' %] (7
The particle 3~-velocity /u—"is giveq by the following well-known relatien:
. 3
A= (-_(23,) J=1,2,3 (8)

Finally, tne particle li-momentum .@’ is found as follows:
] a1 ) A
= 5 D e ) (e — 5,3 1%
=5 g [y (1’ — 2% 1)

- (C-5b)
(C-79)



Zero-Order Solutien

The zero-order function is taken te have the following form:

((Et-P=
f: A,e°( V4,

a
(]

L. =0 (10)
1
e =0
2 ~i(Et=-P2)y
Xo=B.e
where A_, B,, E, and P are censtants. (10) is a solution of (3) for S§f=o0
if the following relations are satisfied:
B = E-FPc (11a)
o mc? °
E+Pc
Ao = "=~ B )

These can be satisfied only if

2 N
E* = (me*)” + (Pc) (12)
which is the familiar relativistic relation between the energy E and the

momentum P of a particle having rest-mass m.,

Tt will be convenient te work with the dimensionless quantities ﬁ and
P defined as follows:

A E ]
= = 1
E mc* \Il-(V/c)i ( 33.)
A P (Vfe)
P= —= (=
mc \ll—(V/c_)" (13v)
Thus (12) assumes the follewing form:
~ A g
E'= 1+ P (14)
B8
For convenience we intreduce the ratie R = 7\3. :
Beo A A |
== = E~-P = —x
Ao E+P

(15)



The following identities will be useful:

|+R*= 2RE (16a)
|- R*= LRF'; (16b)
Substituting (10) inte (7) and (6), we find
€. = Vi Ac R (17)
(en®), = %" (1+R*) = €. E (18a)
3 A
€u’), = (\ R*)=¢e,P (18b)

Substitution of (18) into (8) yields

3 P P

= = - = = 1
U= g 2 /) V (19)

This equation is taken as the definition of the constant velecity V, which

will later be identified with the velocity of sound.

We note that the nonrelativistic case is defined by the fellowing conditions:

~
P= ;z << i
R N.R. case (20)
E= mcz |
In this case
_ P
My = V =~ = N.R. case (21)

Solution in the Presence ¢f a Seund Wave

In order to generate a sound wave, we regard the change in specific

enthalpy S as the driving functien, and assign it the follewing functienal form:
SR = Aceskz (22)

where k is the wave number of the sound wave, (For an ordinary sound wave

-2
in hydrogen at S.T.P. kv 10 cm 1.) S ‘9.,, appears in the spiner equatiens

as a contributien te M:
\v4

m=m(+ %‘) =m[\+(%)cosk’£] | (23)

=

-



The dimensionless constant ’CA'i plays the role of the perturbation para-

meter. For a streng sound wave at S.T.P., for which the variation in

pressure preduced by the wave is ef the order 102dyne/cxn2, the censtant 4a

c*
is ef order 10-15.

Because we wish te satisfy the spinor equations (3) enly te first erder
in 'céi , We can appreximate a term like §|(S'9\,)by f'o(S‘R).

We seek a selutien ef (3) having the form

g'= Aa[l + o cos kz + i(§—-7z) sih kz} ez(Et-Pz)/ﬁ
£*= o
' (2h)
X =0
X" = Bo[\ +aces kz = 1($+7M) stn kz] e—t(Et-Pz)/ﬂ
whereX , 8 , § , and % are constants.

The constant § has the effect of producing phase changes in §| and X"
that are equal in magnitude and epposite in sign. When (2L) is substituted
inte (6) and (7), $ dees net appear to first order in %& . It is enly
in (9) that it makes itself felt, and even there the effect is negligible
for macrescopic waves, In fact, as an alternative procedure, we could omit

g entirely and compensate for the omission by replacing Pz in the phase
by an arbitrary function of z. We shall later see what this functien weuld
have to be,

The constant 7? is a measure of the degree to which the constraint
'p.(gd}(“) -_-,_'0 (g‘x’*): O is violated, It was pointed out in Section 8
of T that, although in principle this constraint should be imposed, the

effect of neglecting it in any macroscopic problem is completely negligible.

We shall see that this is true in the case of a sound wave.



It is to be noted that the two constants § and T( , being coefficients
of the sin kz term, specify the part of f' and Xl that is out of phase with
$@, whose variation is given by A_ccs kz. We shall see that these constants
have no influence on macrescepic solutiens, Only the in-phase constants &
and (3 are important for such solutiens.

The spinor specification given in (24) is a solution of (3) (te first

order in %) if the constants have the following values:

_ V- PCE-P)

L = 1 (Q“)[ P -(G/z)" (253)

L+ B¢

A =% (&) [*TE/{T)Q} (250)
=L ( | +(02)*

S & C") [Pz (0'/1)"] (25¢)
_ & E(A/?)

n - L 4 ?1—(3/1.)1 (25d)

where
&=k % (25e)

Using (2l), (25), and the relations (6)-(8), we arrive at the follewing

expressiens:

€=vZASRI + (x+7) cos kz|

' (26)
=G {‘ + (% )[W]C s ki}
eu® = ?g' g(l‘\-R’“ Y1+ 2(x+R *8)cos kz]}
- o (Afc?) cos k2 (27)
oE{""‘ ﬁl_(e/z)z ]
end= %‘._E{(\—Rz){u— 2(x—R38) cos kz]} (28)
=€, P
(A/c*) cos k2
= (g ) vii- e ] Kz
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u’= ggi- = Zlo+r®) + (- "1)("‘—/3’)cos k*]

= E {l (—z) (0/1) ] cos kz}

From (23) and (30) we find

E(S
mcru® + (4) ~.(_ﬂ_ cos kg = F
—-(oA)*
A1l of the above resulis are, of course, valid enly to first erder in %

Fer all macrescepic sound waves 8<4< |, 1In fact, for an ordinary

-1

=2 -
sound wave in hydregen kAs10 ‘em — and % ~v 10 1hcm, so in this case

& v 10"16. For comparisen, in the same case

£ ~ V -5
P ——'mc' -E-/V'O

A
Thus (O/ 1) is completely negligible compared with B2, Using this fact

in (26)-(31), we have

SH
V&

eu’= e, (S + s )1]

eu’ = e, (i)

2= V]I- Pl ?]
sl ]
rV\c"u° = E

These expressions are, of course, completely relativistic.

(30)

(31)

(32)

(33)
G
(35)
(36)
(37)

(38)
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From (27) and (28) we see that o
: en’) 3
Bj((’u’) = —:_.:}—r(t + B—S——'(Q:) =0 (39)

Thus the continuity condition is always fulfilled, even when & is not negligible.
(38) is obviously a solution to (1), which is just Euler's equation fer the

case of a sound wave. In (31), however, we find another term appearing in

the energy equatien. For a strong sound wave in hydrogen at S.T.P. for

l,A this term has a magnitude of the order 10-'wérg as

which ka10 2cm”

compared with a magnitude of order 10-3 erg for the termwmc®u® This

small extra energy contribution results from the presence of particle spin.

For macroscopic sound waves it is completely negligible, but for extremely

short wavelengths it becomes impertant.

We shall return te tb question of short wavelengths, but first we

shall impose the adiabatic conditien (2) in order to arrive at the familiar

A

expressien for the speed of seund. We note t.hat,to first order in o

it is permissible to write (2) as follews:

Colh = (v-1)R.§€=0-Nr,To 8C (40)

From (33) we have

se=e. 5% (1)

Substituting (41) inte (LO) we have
V= VG-, To (L2)
which is the well-known expression for the speed of sound in a perfect gas,

where,c,‘> is the constant-pressure specific heat per unit mass and ¥ is

the ratio of specific heats,
Te complete the solution, we apply (9) to arrive at the follewing

expression fer particle momentum:
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.= P-tkScoskz (43a)

— (—5—)/\); _ PEA)(s4) (13b)

P- —(6/)*
Fer the macroscepic case, the secend term on the right side ef (43b) is
completely negligible, and se -{mg and Py stand in just the linear relatien
te each other that we would expect.

It is ebvious that (43a) could be rewritten as follows:
_ d .
$2= & [Pz - w5 sinke] (1)

This indicates that if we had replaced Pz in the phase facter in (2l) by
Pz-h$sin kz where § has the value given in (25c), then it weuld have
been unnecessary to include S in the square brackets multiplying Ao and
By in (24).

Spin-Velecity Resenance

The expressiens (25) have the interesting feature that fer e/q_=$ or
P=<1Hhk (L5)

the denominaters vanish, se that even for A=0© it would be pessible te
have a wave of finite magnitude. The physical explanation for this is
that for very shert wavelengths, the spin-dependent forces that are neglis
gible for macrescepic waves beceme large eneugh te play the rele that is
played by the pressure in a macrescepic seund wave, This phenemenen ceuld
be called spin-velocity resonance. It occurs enly for wavelengths of the
order of atemic dimensions, fer which classical mechanics loses its validity.
For example, fer waves in hydregen at S.T.P., resonance would occur at a
wavelength eof the order 10~%em.

When resonance occurs, the solution given above is no longer valid

(a/e?)

~n

i o, )xwere held constant) because the perturba-
P~ (072

(even if the ratio
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tion procedure is no longer valid. Moreover, before any physical reality
could be claimed for such a resonance, it would be necessary to find a
solution that satisfied the constraint &(‘fd x“) =0, because otherwise

the forces arising frem the neglect of this constraint, which are completely
spurious and witheut physical meaning, weuld play an impertant rele.

The occurrence of resonance dees, however, represent a breakdewn of
the classical solution and so serves to answer the questien '"Why, if the
constant h plays ne role in macroscepic problems, must it be chesen te
have the value 1.05X1O"27erg-sec if our only interest in the spinor alterna-
tive te Euler's equation is to solve macroscepic preblems?" The answer
is that, in order te give the correct breakdewn point, namely the peint
at which the characteristic length ef the problem becemes of atomic
dimensiens, the value assigned te fi in the classical spinor theory must

be at least appreximately equal te the value given abeve,
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Nete Cencerning Speed of Sound

It sheuld be noted thatchin the expression (L42) fer the speed of sound
is a functien of the temperature T,. This is most directly seen from the
" expression for £p in terms of Boltzmann's constant X , particle mass m,
and number of degrees of freedom f:
,CP=T]:\—(l+fi) (46)
But the mass m contains a contribution from the enthalpy‘fLa, and so is
a function of T,. Now 1et,c;‘be the specific heat referred te the particle

mass m, that does net contain the enthalpy contributien:

Fe=E0+%) (L7)
Since
me*=mec + MR, = me(c*+,e0 T,) (L8)
we have
_ __c'cp
ICP"/CP( m - C‘+/C;T° (h9)

which when substituted into (45) yields

y
v=[o- 0] (50)

According to (49)
llmv-c (¥-1) =c:\/-g (51)
This limit cannot however, be taken very serlously since, as Synge points out
en p.58 of his book.en the relativistic gas, equatien (2) fer the adiabatic cenditien
is not valid at temperatures for which the thermal energy is comparable

with the rest energy. The limiting speed of sound fer a monatemic gas

R (f=3) that Synge gives (p.77) is

Vi = V‘%—“ - (52)

*
J.L.Synge, The Relativistic Gas (Intérscience Publishers, New York, 1957)




